

Environmental Report

WARSAW MAY 2024

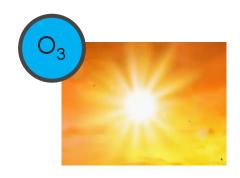
RUNNING FOR CLEAN AIR

DISCLAIMER

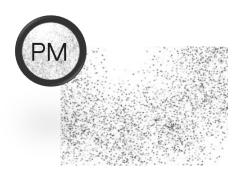
This report contains data from the Air Quality monitoring station installed at Park Pole Mokotowskie, Warsaw, POLAND, operating since May 7th, 2024.

The data presented in this report is collected with sensor technologies which are not regulatory-grade instrumentation following Directive 2008/50/EC. Therefore, the results presented should be considered as informative and not be used for regulatory compliance checking purposes. Any communication of the data should include this statement. After deployment, the monitors are not routinely inter-compared with reference instruments at each destination.

Air Quality Station device:



MAIN POLLUTANTS MEASURED


Nitrogen Dioxide

Primarily gets in the air from the burning of fuel by cars, trucks and buses, power plants

Ozone

Created by chemical reactions between (NOx) and (VOC) in the presence of sunlight

Particulate matter

Mixture of solid particles and liquid droplets found in the air. Some are emitted directly from a source, such as heating in residential, construction sites, unpaved roads, fields, smokestacks, fires or transported by the wind

TO BUILD A SIMPLIFIED AIR QUALITY INDEX (AQI)

Gaseous pollutants

Particulate Matter

EUROPEAN AQI INDEX

Help us understand data measured by the stations

EXTREMELY POOR	May cause respiratory issues in healthy people, and		
126-200	serious health issues in people with lung/heart disease.		
VERY POOR	The pollution level has reached a critical level. Even		
101-125	healthy people may show symptoms for short exposures.		
POOR	Effects can be immediately felt by individuals at risk.		
75-100	Everybody feels the effects of prolonged exposure.		
MODERATE	The air has reached a high level of pollution. Higher than		
51-75	the maximum limit for 24 hours established by WHO.		
FAIR	The air is moderately polluted. A long-term exposure		
26-50	constitutes a health risk.		
GOOD	The air is pure, ideal for outdoor activities.		
0-25	The all is pure, ideal for outdoor activities.		

EUROPEAN AQI LEVELS

Measurements of up to five key pollutants (O3, NO2, SO2, PM10, PM2.5) determine the index level that describes the current air quality situation at the location of each Kunak device. The index corresponds to the poorest level for any of the five pollutants based on the following scheme:

Pollutant	Level index (based on pollutant	concentrations in µg/n	n³)			
	Good	Fair	Moderate	Poor	Very poor	Extremely poor
	(0-25)	(26-50)	(51-75)	(76-100)	(101-125)	(126-200)
PM _{2.5} (24h)	0-10	10-20	20-25	25-50	50-75	75-800
PM ₁₀ (24h)	0-20	20-35	35-50	50-100	100-150	150-1200
NO ₂	0-40	40-90	90-120	120-230	230-340	340-1000
O ₃	0-50	50-100	100-130	130-240	240-380	380-800
SO ₂	0-100	100-200	200-350	350-500	500-750	750-1250

https://www.kunak.es/doc/08.Manuals/html/Kunak Cloud UserManual EN.html# Toc102586013

RECOMMENDED AIR QUALITY GUIDELINES LEVELS & INTERIM TARGETS

Pollutant	Averaging time		Interim target			
		1	2	3	4	•
PM _{2.5} , µg/m³	Annual	35	25	15	10	5
	24-hours	75	- 50	37.5	25	15
PM ₁₀ , µg/m³	Annual	70	50	30	20	15
	24-hours	150	100	75	50	45
O ₃ , µg/m³	Peak season ^b	100	70	-	-	60
	8-hour ^a	160	120			100
NO ₂ , µg/m³	Annual	40	30	20	-	10
	24-hour	120	- 50	_	_	25

AIR QUALITY GUIDELINES FOR NITROGEN DIOXIDE (SHORT AVERAGE TIME) REMAIN VALID

Pollutant	Averaging time	Air quality guidelines that remain valid		
NO ₂ , µg/m³	1-hour	200		

Recommended 2021 AQG levels compared to 2005 air quality guidelines

Pollutant	Averaging Time	2005 AQGs	2021 AQGs
$PM_{2.5}$, $\mu g/m^3$	Annual	10	5
	24-hour ^a	25	15
PM ₁₀ , μg/m ³	Annual	20	15
	24-hour ^a	50	45
O ₃ , μg/m ³	Peak season ^b	-	60
	8-hour ^a	100	100
NO ₂ , μg/m ³	Annual	40	10
	24-hour ^a	-	25
SO ₂ , μg/m ³	24-hour ^a	20	40
CO, mg/m ³	24-hour ^a	-	4

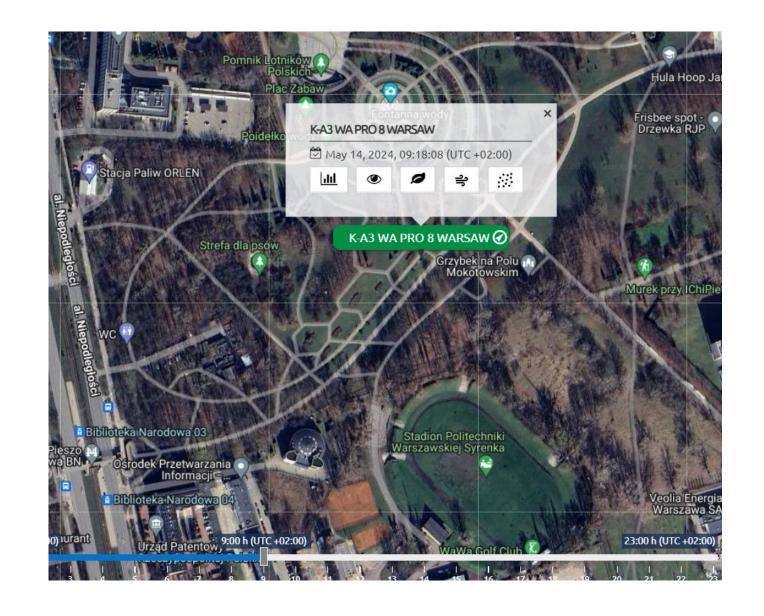
https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1&isAllowed=y

METHODOLOGY

Meteo sensors

Temperature
(WBGT) Wet bulb globe temperature
Relative Humidity

Gas sensors (ug/m3)

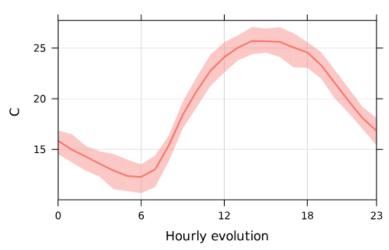

NO, NO2, O3

Particulate Matter sensor (ug/m3)

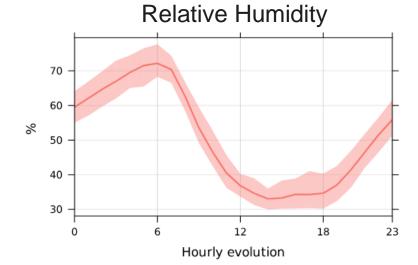
PM2.5, PM10

Positioning

GPS



AGGREGATED DATA May 7th to May 31st



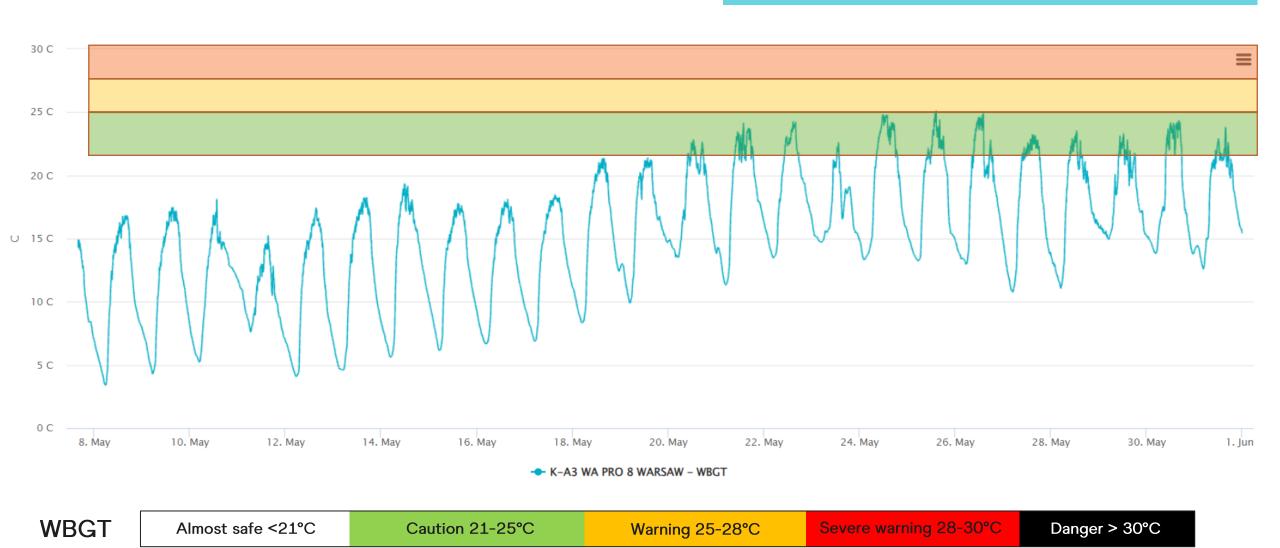
TEMPERATURE & HUMIDITY – Time variation - May 7th to May 31st

Aggregated data of the temperature hourly evolution indicate that the lowest temperature is measured at 06:00 and the highest between 14:00 and 15:00

Aggregated data of the humidity hourly evolution indicate that the lowest humidity is measured at 14:00 and the highest between 05:00 and 07:00

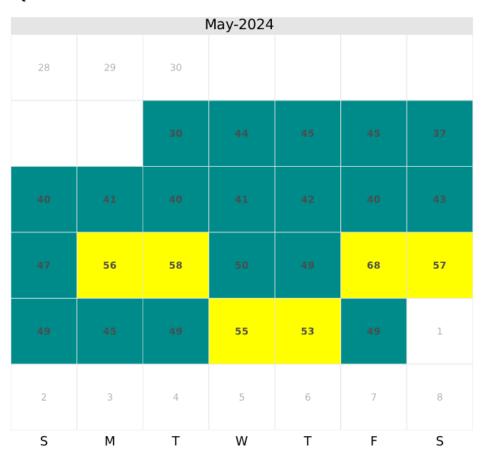
WET BULB GLOBE TEMPERATURE - Time variation - May 7th to May 31st

WBGT is a measure of heat stress in direct sunlight.


It is a comprehensive measure of all the weather-related factors

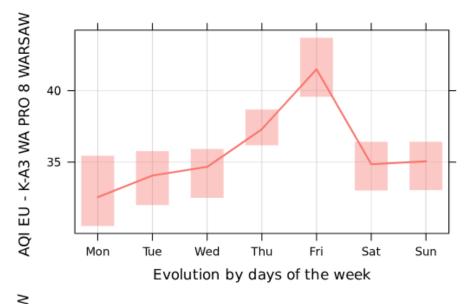
- (i) air temperature;
- (ii) humidity;
- (iii) wind speed;
- (iv) solar radiation

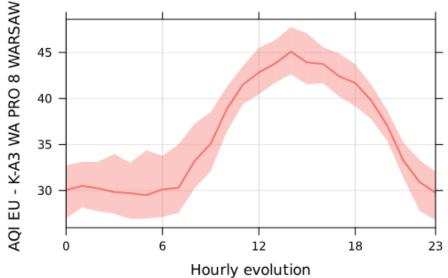
that impact the health and performance of athletes.


WBGT - Time variation May 7th to May 31st

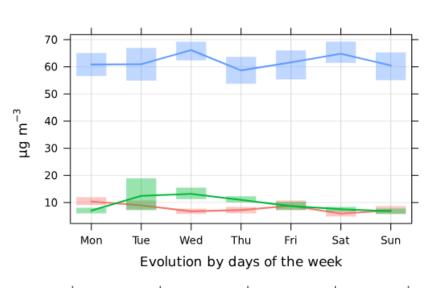
WBGT index was low during this period and did not represent a significant level of heat stress level for training athletes.

AQI EU - May 7th to May 31st


AQI EU of K-A3 WA PRO 8 WARSAW in 2024


The AQI calendar plot indicates the AQI for each day during the monitoring period. Helping us to have a first glimpse of the conditions for each day. The AQI measured in May shows a relatively low levels attesting to a fair air quality. The worst and best AQI values reported over the period are (57) and (30) respectively.

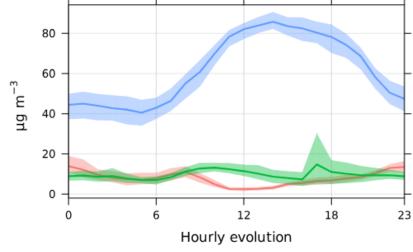
AQI - Time variation - May 7th to May 31st


Aggregated data of the AQI evolution throughout the monitoring period helps us understand how the AQI changed based on day of the week and time of the day.

Aggregated data of the evolution by days of the week indicates the lowest AQI values were recorded on Monday.

Aggregated data of the AQI hourly evolution indicates the lowest AQI values during nights and mornings, and highest AQI values during early afternoon between 13:00 and 17:00

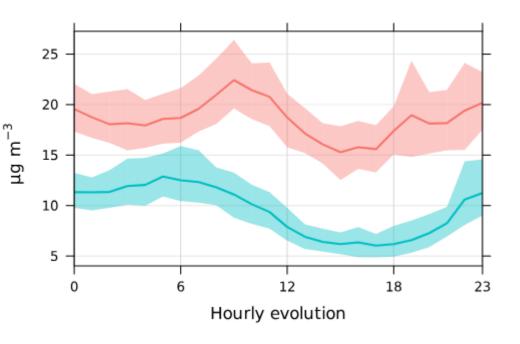
GASEOUS POLLUTANTS - Time variation - May 7th to May 31st


NO₂ GCc - K-A3 WA PRO 8 WARSAW

O₃ GCc - K-A3 WA PRO 8 WARSAW

Aggregated data of the gaseous pollutants evolution by days of the week indicates that absolute concentrations were relatively low for NO2, NO. 03 shows constant values at a relatively higher levels.

Aggregated data of the gaseous pollutants hourly evolution do not show any typical trends for NO2 and NO suggesting a very low influence of vehicle traffic emissions (morning and evening rush hours) in this location. O3 peaked in the early afternoon between 13:00 and 17:00. Typically, ozone levels reach their peak in mid-afternoon, after exhaust fumes from morning rush hour have had time to react in sunlight.


PARTICULATE MATTERS - Time variation - May 7th to May 31st

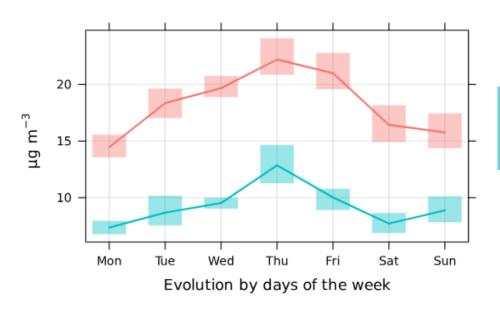
PM₁₀ - K-A3 WA PRO 8 WARSAW

PM_{2.5} - K-A3 WA PRO 8 WARSAW

Aggregated data of the particulates pollutants hourly evolution show a moderate amount of particulate matters. PM2.5 and PM10 showed higher concentrations at morning, These organic compounds can be emitted by both natural sources, such as trees and vegetation, as well as from man-made (anthropogenic) sources, such as industrial processes and motor vehicle exhaust. In this situation, both hypotheses are likely.

Guideline values

Coarse particulate matter (PM10): $45 \,\mu\text{g/}\ \text{m}^3\ 24$ -hour mean Fine particulate matter (PM2.5): $15 \,\mu\text{g/}\ \text{m}^3\ 24$ -hour mean


PARTICULATE MATTERS - Time variation - May 7th to May 31st

PM₁₀ - K-A3 WA PRO 8 WARSAW

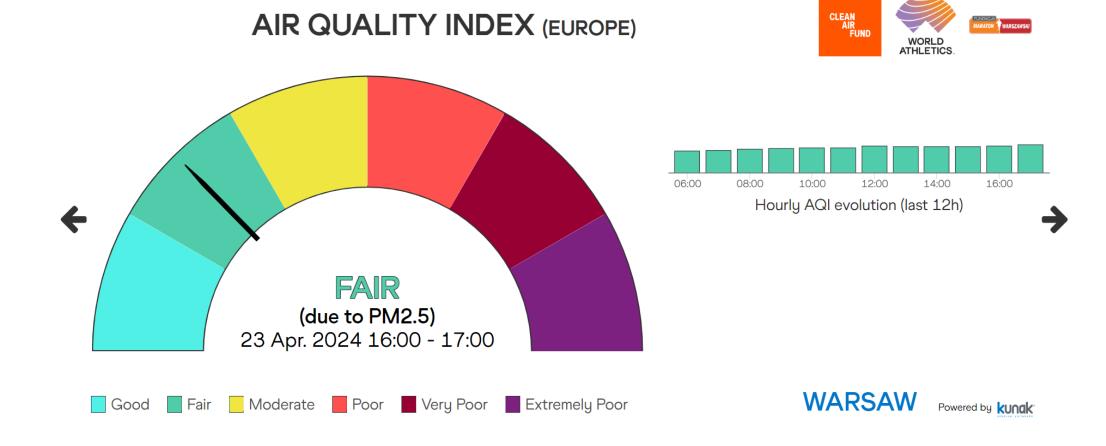
PM_{2.5} - K-A3 WA PRO 8 WARSAW

Aggregated data of the particulates pollutants evolution by days of the week indicates that absolute concentrations were higher on Thursday.

Guideline values

Coarse particulate matter (PM10): $45 \,\mu\text{g/}\ \text{m}^3\ 24$ -hour mean Fine particulate matter (PM2.5): $15 \,\mu\text{g/}\ \text{m}^3\ 24$ -hour mean

CONCLUSIONS

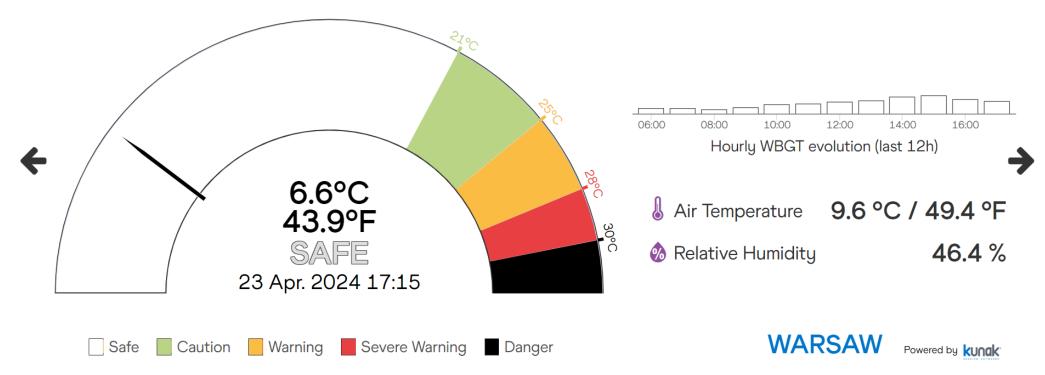

Air Quality Index values recorded during the month of May shows a fair to moderate levels of air pollution. AQI index was largely influenced by Ozone levels.

WBGT index was low during this period and did not represent a significant level of heat stress level for training athletes.

Aggregated data of the gaseous pollutants hourly evolution indicates typical trends for NO2 and NO do not show any typical trends suggesting a very low influence of vehicle traffic emissions (morning and evening rush hours) in this location. Ozone levels reached their peak in the mid-afternoon, after exhaust fumes from morning rush hours have had time to react to the sunlight.

Aggregated data of the particulates pollutants hourly evolution show a moderate amount of particulate matters. PM2.5 and PM10 showed higher concentrations at morning, These organic compounds can be emitted by both natural sources, such as trees and vegetation, as well as from man-made (anthropogenic) sources, such as industrial processes and motor vehicle exhaust. In this situation, both hypotheses are likely.

Appendix


Appendix

HEAT STRESS INDEX WET BULB GLOBE TEMPERATURE

